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1 Introduction 
The original intention of this mini-grant was to research the applicability and 
effectiveness of a hardware based mandatory access control mechanism operating at the 
functional level. It was envisioned that a mandatory access control mechanism that 
operated at the function level, i.e. a system that enforces read, write, and execute 
permissions for memory blocks based on the current executing function, is a good 
balance between required changes to a processor’s architecture, required user interaction 
and the type of memory problems it can mitigate. This type of protection will provide an 
additional layer of defense against memory based threats such as buffer overflows. The 
hardware mechanism was expected to make the processor more robust against buffer 
overflows independent of the underlying operating system. 

The results were different. We learned that access control at the functional level is 
inadequate for mitigating memory based threats. Also, integrating function level 
protections would require drastic changes to a processor’s architecture, a highly 
undesirable trait. Finer-grained control at the byte or word level is better for both 
protection and ease of implementation. 

This paper will present the results of the mini-grant research. It will explore a possible 
explanation on why buffer overflows, format strings and other memory related 
vulnerabilities are still so prevalent. We argue that the most successful solutions are ones 
that can be integrated and applied without requiring any end-user intervention. Following 
this concept, the most successful solution should be a hardware based one that can be 
integrated into commodity processors with some operating system support. Like the No 
eXecution (NX) bit technology, it should be easily integrated into current processor 
architectures at low cost, while remaining backwards compatible with older software. But 
unlike the NX bit technology, its use should not be discretionary upon the ring 3 user's 
desire, but should have at least some mechanisms that are mandatory and uncontrollable 
even at the ring 0 privileged operating system level. 

The paper is organized as follows. Section 2 will introduce the underlying reason why 
buffer overflow and related memory based vulnerabilities exist. Section 3 will enumerate 
some of today's buffer overflow solutions. The idea of categorizing solutions based on 
the requisite amount of end user interaction is also described in this section. Section 4 
will discuss design considerations. Section 5 will discuss the proof of concept. Results 
and conclusions will be presented in Section 6. 

2 Background 
The first great computer infection, the Morris Worm, made use of a buffer overflow 
exploit in the fingerd application as its method of propagation [1]. This was back in 1988.  
Given the extensive damage of the worm, one would think that a solution to inoculate the 
world’s computers from such a sickness would be developed immediately.  However, in 
2001, thirteen years after the Morris Worm, the Code-Red and CodeRedII worms used 
another buffer overflow that cost $2.6 billion to recover from [2].  This is a testimony to 
the ineffectiveness of the developed solutions during that thirteen year period and the 
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overall prevalence of this attack scheme. In fact, even in 2007 the number of buffer 
overflow vulnerabilities is expected to be an all time high [3]. 

After reviewing the available literature, we have concluded that the problem is not the 
lack of solutions, but of a pervasive one that can be enabled and adapted easily by large 
populations and that actually solves the underlying problem.  

For analysis purposes, we define memory based vulnerabilities as vulnerabilities that 
arise from the way that system memory is organized and used. They can be binned into 
four large groups: un-initialized data, memory leaks, data disclosure and data corruption. 
Un-initialized data problems arise when an application programmer fails to initialize 
objects to fail-safe defaults. Memory leaks occur when applications allocate memory but 
lose access to them; although, the operating system can retrieve the memory after the 
application completes. Data disclosure problems occur when memory that should not be 
readable by an application is. Data corruption threats are the ones where memory data is 
overwritten when it was not part of the application designed to do so.  

Unlike un-initialized data and memory leak vulnerabilities, data disclosure and corruption 
vulnerabilities cannot be fully attributed to programmer error. Although programmers can 
properly bounds check their buffers, the underlying problem exists because the CPU has 
ubiquitous access to all of memory, i.e., memory is world read, write and executable by 
the CPU. On the other hand, we consider uninitialized data and memory leak problems 
software issues because processors do not have built in constructs to allocate memory on 
the object level, this is all done in software.  

The common problem amongst the four of them is the task of managing and protecting 
memory is left to the operating system’s memory management unit (MMU). When a 
process requests memory space from the operating system, the MMU rounds the 
requested space to the nearest page and allocates those pages to the application. The 
operating system then keeps track of the pages and performs access control on each page 
to ensure that other processes cannot access the same address space unless explicitly 
permitted. On the other hand, the CPU operates on instructions and bytes of memory.   

This imbalance in the unit of protection in the operating system and the CPU, as well as 
reliance on the operating system to offer access control for memory pages, is what 
enables many of the memory based vulnerabilities. For example, buffer overflows are 
successful because a process can overwrite all in-band (contiguous with reference to the 
accessed variable) data as long as the data is within the page or even across pages 
provided the pages are contiguous. This is true even though the write should be restricted 
to only within the buffer itself.  Unfortunately though, current processor designs and 
operating systems can only control access on pages and not objects. 

Upon review, we have concluded that there are three possible solutions to this problem: 
increase the granularity of the operating system's memory access controls to memory 
objects, implement access controls in hardware or a hybrid of the two. We believe that a 
hybrid approach that implements mandatory access controls in hardware and provides 
discretionary access control mechanisms for operating system use is the most desirable 
solution. This approach has the most potential to affect a great number of users and 
provides foundational support for a defense in depth strategy. 
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3 Related Work 
As previously mentioned, many solutions have been proposed to close off the buffer 
overflow attack vector. We believe that buffer overflow vulnerabilities are still high 
impact items, not because the solutions are technically ineffective, but practically 
ineffective. They either solve the wrong problem, that is prevent execution of user 
supplied code instead of preventing the overflow in the first place, or because they 
require too much user sophistication or interaction, which restricts its use.  

In the following subsections, a few solutions and why we believe they are ineffective are 
outlined. To understand the level of user interaction required, each will be placed into the 
following categories ordered from high to low user-interaction: language, compiler, 
library, application, operating system, and hardware. Who the user is undoubtedly 
changes from solution to solution but the end-user will always remain the same.  

To keep things simple, we define the user as the user of the solution, who will change 
depending on the solution, and the end-user as the normal everyday person who simply 
uses computers and is not cognizant of vulnerabilities, patches or anything related to the 
topic. To illustrate, the user in language based solutions is the developer, in application 
based solutions is the administrator, and the end-user in both of these remains the same. 
Given this distinction, the further away the user and end-user are in terms of computer 
systems know-how, the less desirable the solution. In other words, the most desirable 
solution is one where all end-users can adopt readily.  

Safe languages are considered the highest level of required user interaction because the 
user in this case must be the skilled programmer who takes code written in an unsafe 
language like C, and translates it into a safe language like Java. Such a task is extremely 
difficult, costly and sometimes impossible when it comes to legacy code. Furthermore, 
even if all of this is possible, the new version of the application must still be tested to 
ensure backwards compatibility and the old version upgraded. Given the large number of 
potential applications, requiring all developers to re-implement their software and 
administrators to upgrade existing software, makes this solution almost impossible to be 
widely adopted. 

Compiler based solutions are better than language based solutions, since all that is 
required is a recompilation of available source code, although it is ineffective for 
situations when source code is not available. It also suffers from the installation and 
distribution issue of safe languages. The user in this case does not need to be a developer, 
just someone with the know-how of building new packages and then installing them. 

Library and application level solutions are much better since now the user doesn't even 
need to know any languages, all they need to do is install the new library or application. 
Therefore, the user is an administrator. 

Operating system (OS) solutions are similar to application level solutions, but are slightly 
better because all computing systems require operating systems which normally come 
pre-installed with new computers. Unfortunately though, this will require that all 
operating systems must be updated to support this new feature. Since operating systems 
these days comes with automatic patches and updates, the user for this solution can 
actually be the end-user as long as the OS vendor supplies the patch. 
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Hardware based solutions require the least user intervention and are the most pervasive, 
because changing the CPU or obtaining one through a new computer will mean that the 
solution is built in and it doesn't matter which operating system is used. The user can be 
the end-user, but that is only when a new system is purchased. For older systems, the 
user must be an administrator or technician type since they must install and configure the 
new hardware. Unfortunately, hardware only solutions are difficult to develop. A more 
reasonable approach, and the approach taken in this project, is to develop a hardware 
solution that requires operating system support. This is still valuable since in both cases 
the user can potentially be the end-user. 

3.1 Safe Languages 
Since buffer overflow problems are primarily associated with C and C++, and more 
specifically their use of unsafe C library functions like strcpy, memcpy, printf and etc., 
using safer languages like Java and C# is one possible solution. In fact, most modern 
languages conduct bounds checking on all arrays, which would stop buffer overflows 
before they can occur. The biggest problem with these solutions though, is that they are 
not completely compatible with C and C++. What this means is that developers will have 
to completely reengineer their codes to adapt to the paradigms of the new language. The 
problem is exacerbated when legacy code is involved. In such situations, it might not 
even be possible to port the software to a new language because the algorithmic and 
implementation specifics have been lost with time.  

Fortunately though, there are safer languages that are almost completely compatible with 
C and C++. One example is Cyclone, a C variant [4]. It introduces the concept of fat 
pointers, which are pointers that contain size information. By doing so, all the user needs 
to do is to change their current buffer pointers to fat pointers and bounds checking will be 
enforced, making the task of re-implementing software much simpler. Unfortunately 
though, in order for this type of solution to be effective, all software developers must 
jump on the band wagon and use the new language. There is nothing the end-user can do. 

3.2 Compilers: StackGuard and CRED 
StackGuard is probably one of the most well known stack smashing protection schemes 
available. It is a modified version of the gcc compiler that automatically inserts 
“canaries” into the stack before a function is called. After the function completes, and 
before it returns to the return address on the stack, the canary value is checked with a 
stored version. If the values do not match, then it means that the canary has been illegally 
overwritten, and the stack is corrupted [5].  

CRED (C Range Error Detection) is an extension to the GNU compiler that was 
developed at Stanford University [6].  It relies on replacing every out-of-bounds pointer 
value with the address of a special OOB (out-of-bounds) object created for that value. 
The authors showed that it is an effective and viable solution. They ran CRED on 20 
open source applications ranging in complexity from approximately 400 to 600,000 lines 
of code and all test cases compiled and ran successfully. Unfortunately, slowdown for 
these test cases range from no effect to 12 times depending on the prevalence of buffers 
in the application. 
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In addition, seven of the 20 test cases were known to have buffer overflow 
vulnerabilities. CRED successfully detected the overflow attempts when known exploits 
were run against the applications. CRED also successfully detected overflow attempts for 
twenty additional test cases covering stack, heap and data segment overflow 
vulnerabilities. This is in sharp contrast to the 50% success rate of “ProPolice, the best of 
the tools evaluated by Wilander and Kamkar” [6]. 

Even with the success of CRED, the same practicality problem as with safe languages 
still exists. This solution, like other compiler based approaches, requires that each 
vulnerable program be recompiled, which is still much better than reimplementation, in 
order for the protection to take effect. This means that the source code for each 
application must be available to the user that wishes to make use of CRED’s protection.  

The source code requirement is not such a huge problem for the growing number of open 
source projects, but it still requires the user to have the know-how of obtaining the 
source, recompiling it, and then install the latest build. What this means is that the end-
users will have to wait until a new build of the software by the developers.  

3.3 Libraries and Applications  
At the next level of influence and required user interaction is the shared library. 
Applications are also placed into this category because in both cases, the user will have to 
be an administrator who will have to install the new libraries and/or applications. This is 
also the point where the end-user might actually be able to implement the solutions. Or in 
other words, the user and end-user has a good chance of being the same person. 

Libsafe is an example of secure libraries [7]. It intercepts certain unsafe calls, calculates 
the maximum allowed size of the buffer based on the stack frame address, and then calls 
the safer bounded variant such as strncpy. Although this solution has proven to be 
effective against some stack overflows, it still has some flaws. One problem is it does not 
prevent the overflow itself, in-band data within the stack frame can still be overwritten. 
Only the control flow data is protected. Like other library based approaches, it is only 
applicable when the application is dynamically linked. It will not be effective for 
statically linked software or for user defined functions.  

Program Shepherding is a system built on top of Runtime Introspection and 
Optimization, a dynamic optimizer application. It seeks to stop malicious code executions 
by using the concepts of restricted code origins, restricted control transfers, and un-
circumventable sandboxing [8]. When an application is run under this solution, the loader 
must first determine if the block of instructions is trusted in accordance with a security 
policy and the origins of the code, e.g. executable file from the disk or dynamically 
generated code, and tags them as executable. This first step is known as restricted code 
origins. Restricted control transfers refers to the restriction of jumps and branches from 
one block of memory to another only if it is allowed in the security policy, e.g. if the 
target of the branch is not tagged as executable, then control transfer should be restricted. 
Finally, uncircumventable sandboxing is used to ensure that all implemented security 
checks must be done at all times. We believe that this type of solution is going down the 
right direction, in terms of enforcing the execute permissions, but like other approaches, 
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it only targets the execution of malicious code and not the overwriting of data in the first 
place.  

3.4 Hybrid Approaches 
While Program Shepherding monitors program control flows closely, Dynamic Access 
Control monitors program data that might be indicative of an attack, even ones that do 
not alter control flow [9].  The dangers of these types of attacks are demonstrated in [10].  
Dynamic Access Control requires support at both the hardware and micro-architecture 
level.  The compiler identifies program regions where data should not be modified as per 
program semantics.  If there is an attempt to modify this data at runtime, the hardware 
detects the attack.  Again, since this answer to the buffer overflow problem requires a 
compiler addition, recompilation and source code availability are both necessary.  
Average performance degradation after optimizations is 14.1%.  There is also an 
associated memory overhead. 

3.5 OS Level: PaX and Address Space Layout Randomization 
PaX is a Linux kernel patch written by The PaX Team whose principal author chooses to 
remain anonymous.  PaX’s main avenues of defense are to mark data as non-executable 
and take advantage of address space layout randomization (ASLR) [11].  By default, PaX 
marks the memory that holds the stack, heap, anonymous memory mappings, and any 
section not specifically marked as executable in an ELF file, non-executable.  This 
prevents the standard stack-smashing attack since shell code stored in the buffer on the 
stack will be marked as non-executable.  PaX randomizes the location of the stack, heap, 
loaded libraries, and executable binaries thereby greatly reducing the likelihood of 
success for attacks that rely on hardcoded addresses, such as a standard ret-libC attack.  
This protection, when combined with a hardware protection scheme such as the NX bit 
(discussed later) provides a powerful defense in depth solution. 

Being a patch to the Linux kernel means that the target demographic that uses this 
software will likely be adept at computer-related issues. These kinds of users would also 
be capable of applying many of the other techniques and is normally not the victim of 
memory based vulnerabilities. For this reason, PaX may not have as much to contribute 
to solving buffer overflow issues as some other solutions that can be applied to Windows-
based platforms, for which most exploits are written for and whose users are traditionally 
less tech savvy. There is no reason why the same techniques cannot be integrated into 
Windows-based products though. 

It should also be noted that a successful attack scheme on PaX has been published in 
Phrack [12].  It directly calls the dynamic linker’s symbol resolution procedure to get 
around the ASLR aspect of PaX and uses a traditional ret-libC exploit from there. This 
supports the idea that single solutions are inadequate. 

3.6 Hardware: Dynamic Information Flow Tracking 
DIFT (Dynamic Information Flow Tracking) is a hardware-based tainting mechanism 
[13].  It offers two different security policies depending on the amount of protection 
needed and overhead willing to be incurred.  Data from I/O channels is considered 
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spurious and is marked as such. This data is stored in an extra bit and is propagated to 
other memory locations as it interacts with other pieces of data.  DIFT makes additions to 
a standard processor to add the extra bits and proposes various schemes to minimize 
memory and performance overhead.  The processor then checks the taint bits before 
executing an instruction or committing to a branch.  

On some architectures, standard integer arithmetic instructions are indistinguishable from 
pointer arithmetic instructions. This poses a problem for taint bit propagation. Also, in the 
case of properly coded program first bounds checking a piece of data and then combining 
it with a trusted pointer, a perfectly safe piece of code could be marked as tainted.  In this 
case, the operating system taint module could be invoked many times, resulting in a hefty 
overhead.  There is also a format string attack that takes advantage of a little known printf 
feature that can bypass DIFT [14]. 

3.7 Hardware: Secure Bit2 
Secure Bit2 also extends every memory location by one bit which is used to add semantic 
meaning to each word of memory [15].  This bit is moved along with its associated word 
by memory manipulating instructions.  Words in buffers between processes get their 
secure bit set while all others mark the secure bit at the destination register or memory 
location.  CALL, RET and JMP instructions check the secure bit and if set, generate an 
interrupt or fault signal.  Modifications are required at the kernel level to set the secure 
bit when passing a buffer across domains.  Since the address validation is done in 
hardware, there is little performance overhead.  Memory overhead is related to the total 
size of memory. An additional bit is needed for each word. 

This solution is closer to the type that has a chance to be implemented widely.  There is 
minimal user intervention required and it should be immune to the standard stack-
smashing attack scheme.  However, there is still the possibility of overwriting in-band 
data stored on the stack.  Such an event could cause unintended and incorrect program 
behavior and potentially could be used to form an attack itself.  As previously mentioned, 
it has been shown that attacks on non-control based data are dangerous as well. 

3.8 Categorization of Past Solutions 
In Figure 1, the continuum of user involvement in taking advantage of the previously 
mentioned solutions is given.  At the uppermost portion of the figure are safe languages 
like Java and Cyclone that require a great amount of work on the user’s part.  Obviously, 
as more labor is required of the user, the tasks become inherently more complex and 
require a more tech savvy user.  Past a certain point there is little utility in such a solution 
because a user of this level of expertise is likely to have other protections installed on 
his/her computer and is less likely to download or run malicious software. 

The goal for our solution is to have it exist at the tip of the arrow in Figure 1, representing 
a minimal level of user involvement and thus, skill.  It is only this type of solution that 
can hope to be successful on a large scale.  Requiring any more work or skill on the 
user’s behalf would result in a solution that may fix the problem, but is unlikely to ever 
help the end-user. 
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Figure 1: Diagram illustrating the range of user intervention to implement various buffer overflow solutions. 

3.9 Secure Architectures 
Dating all the way back to 1959, there has been an effort to create more secure processors 
by enforcing safety precautions at the hardware level.  Capability-based architectures 
refer to computer systems that access data using an address that refers to both the 
memory object itself and a set of access rights that govern how that data can be used.  For 
an excellent reference of past such architectures see [16]. 

First shown in the early 1960s, the Burroughs family of processors incorporated some 
very sophisticated features for their time [17].  Originally, the B5000 used a 1 bit tag as 
part of its 32 bit word.  The B6000 expanded it to 3 bits and moved it outside the word.  
It differentiates data from code and control words and is even used to indicate type (such 
as single and double precision floating point).  The hardware enforced security 
mechanism makes it impossible to execute data as code or to interpret code as data. 

Released in 1980, the IBM System/38 sought to be a totally object-oriented architecture 
[18].  The System/38 featured 40 bit words consisting of 32 data bits, 7 bit ECC, and a 1 
bit tag.  The tag bit is set whenever the data bits contain a pointer while all other words in 
memory have their tag bits cleared.  These tag bits cannot be accessed by the instruction 
interface and cannot be set by the user.  Instead, they are manipulated by instructions that 
use microcode to build the pointers and maintain the integrity of the tag bits.  User 
modification of the pointer results in its tag bits to be cleared making it invalid for 
addressing purposes.  

Introduced in the year after the IBM System/38, the design and layout of the chip set for 
the Intel iAPX 432 took over 100 man-years [16].  Memory references are performed 
using 32 bit long access descriptors (ADs) that specify the actual address and access 
rights to an object.  A procedure can only address and manipulate the ADs that are within 
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its execution environment.  The access rights specify whether the possessor of the AD 
can read from or write to the object or delete the AD itself.  Unfortunately, the iAPX 432 
was doomed by performance problems and an overzealous marketing campaign. 

A novel computer architecture that is still around today is used by Unisys Mainframes 
[19].  The ISA tags each word of memory to indicate how the data stored there can be 
used.  All data references are done through descriptors generated by the hardware and 
operating system using instructions unavailable to ordinary user code.  Every memory 
reference is checked for a valid descriptor and that the reference is within appropriate 
bounds.  Programs that are running are not given privilege to descriptors that hold their 
own code or that of another program.  Furthermore, code and data are kept separate 
eliminating any adjacency between buffers and areas containing executable code. 

These types of ideas were brought into the mainstream when AMD began to use an extra 
bit, the No eXecute bit (NX), to mark pages of memory as non-executable.  Intel’s 
version of AMD’s NX bit is called the Execute Disable Bit [20].  The capability of the 
processor to take advantage of this sort of functionality can be queried by the operating 
system that is running.  When activated by setting the bit IA32_EFER.NXE, memory 
pages can be marked as not being executable. This is done by adjusting bit 63 in the 
corresponding page table entry for that page of memory.  If the protection is running and 
an instruction fetch to a linear address that translates to a physical address in a memory 
page that has the execute disable bit set, a page fault exception will be generated.  This 
sort of protection is very close to what is desired in protecting memory from memory 
based vulnerabilities: there is no effort required of the user other than having a processor 
with the ability, it incurs very little memory or performance overhead, and is backwards 
compatible with existing code.   

To allow for that backwards compatibility, Intel decided to give the host OS the ability to 
turn this protection on or off.  Windows XP Service Pack 2 and Windows 2003 Service 
Pack 1 contain patches to take advantage of this hardware feature by using what 
Microsoft calls Data Execution Prevention (DEP).  Shortly after their debut, exploits 
began to be posted that easily sidestepped the mechanism [21].  In order to bypass DEP, a 
ret-libC style attack can be used to jump to a section of system code marked as 
executable that can then further be exploited to disable DEP and return into shell code 
stored in the original buffer.  If there was no way that a process could disable NX support 
at runtime, this exploit would not work.   

It is this particular fact that makes it seem that a mandatory access control mechanism 
that works at the hardware level would be more successful.  Protection schemes at the 
hardware level should not be allowed to be circumvented by the OS.  While it is 
understandable that some security tradeoffs may need to be made to allow for backwards 
compatibility, some basic security components should not.   
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4 Design 
This solution borrows the ideas from current approaches and implements them at a level 
that has the most impact and requires the least user and end-user know-how. This can be 
achieved by implementing a Mandatory Access Control mechanism within the processor 
hardware.  

By implementing the solution in hardware, all future processors can potentially have 
additional safe guards that can be used by the most people, like the NX bit.  As support 
becomes more widespread, more abstract components of the CPU could take advantage 
of this type of protection. 

There were numerous design considerations but we finalized on the same tagging 
architecture that operates on memory objects as that found in the original Burroughs 
system and others. Through our research, we have found that enabling access control at 
the function level required too much re-engineering of the processor’s architecture. 

4.1 Failure of Function Level Access Control 
The largest impediment to a function level access control design was that current 
processors are largely function-agnostic. The lack of support for function level operations 
makes a function level approach extremely expensive to develop. The first problem we 
discovered was the existence of both branch and CALL instructions. While it is desirable 
to utilize the CALL instruction when available, it is not an architectural requirement. Users 
are allowed to directly utilize the branch instruction to jump to a predefined start of the 
next function. This meant that it was impossible, with current processor architectures, to 
confidently infer the beginning and end of a function. Thus function level access control 
would require a complete redesign and implementation of a different instruction 
invalidating all of today’s software.  

In addition to this debilitating result, we also realized that even if a processor with the 
strict call-only instruction set was available, it would still have to be redesigned to 
include a storage area for keeping track of all the different functions in all of the different 
processes that are currently operating. While it is possible to incorporate such tables into 
current memory hierarchies by designating certain memory areas as processor only, 
similar to the Linux kernel’s kernel address space, it is still too difficult. To realize this 
approach, the processor must maintain a table for each running process and ensure that 
there is enough space for as many tables as there could be processes. Given that the table 
would require the number of processes x number of threads / process x number of 
functions / thread x size of table / function bytes where the number of processes and 
threads are not necessarily bounded, it would add an additional requirement on the virtual 
memory management unit to ensure that these tables are paged as necessary. It was 
deemed that this required too much behind the scenes coordination. 

4.2 Instruction Level Access Control 
Given the desire to keep the solution as simple as possible, we determined that enforcing 
access control at the instruction level would be perfect. Although it is true that 
instructions are even lower level than functions, it does not mean that the design and 
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implementation is more difficult. In fact, because processors naturally operate 
instructions, it is actually considerably easier. The only required changes are to provide a 
tag for each byte of memory and change each processing instruction to enforce a simple 
policy based on each byte’s tag.  

We concluded that tagging each byte of memory is the desired approach. This was 
chosen in favor of tagging each word, since memory architectures are byte addressable, 
even though most compilers use word boundaries. Although it does mean that there will 
be considerable storage overhead, it is compatible with virtual memory architectures. The 
only change needed is to ensure that the memory management unit reserves a portion of 
memory for this purpose. The tag can then be stored in this portion and is easily 
accessible through a simple address mask like current virtual memory architectures. This 
portion of memory can also be paged and loaded like any other memory locations as well. 
It is a significantly simpler feat than that of the function level approach, since this does 
not require the processor to know about running processes or functions. 

We determined that one bit per byte is sufficient to provide an evolved version of the no 
execution functionality. Unlike current techniques though, the bit will be used to mark 
individual bytes as executable instead of whole pages. The advantage of marking bytes is 
to ensure that there is no slack space where an attacker can inject their own code that 
would be automatically executable because it was placed into an executable page. This 
approach requires an operating system level patch to ensure the loader marks each 
instruction byte as executable and all others within the page as non-executable. As 
discussed above, operating system patches are largely automated, which makes this a 
desirable solution. Hopefully, all the end-user has to do is purchase a new computer.  

We also determined that two bits per byte are sufficient to prevent stack smashing and 
similar buffer based attacks as well. The first bit will be used as the executable flag while 
the second bit is used as the vector flag. The vector flag will be set if the byte is part of a 
vector object, i.e. array, and unset if it is a scalar. Given this distinction the processor can 
ensure that instructions that start writing in one type cannot continue writing to another 
type. This approach has its drawbacks though as the processor must be designed to be 
cognizant of write loops and it does not prevent overwriting from one vector variable into 
another vector if they are contiguous. One method to get around this weakness is to 
ensure that compilers separate vectors with a scalar in the middle, but even this approach 
is still not robust against multi-dimension arrays where the vectors must be contiguous 
for alignment purposes.  

Perhaps a better use of this additional bit is for the processor to mark certain bytes of 
memory as processor only. This will ensure that the saved stack pointer and return 
addresses that are part of the function pre-amble can only be written to by the CALL and 
RET instructions. The only drawback to this approach is the wasted bit for all of the bytes 
which are not used solely by the processor, which is the majority by far.  

We determined that the best use of the two bits is to utilize all four combinations of 
scalar/vector and execute/no-execute. Since only instructions are executable, and 
instructions are scalar objects, executable vectors should be an invalid combination. This 
combination can be used to represent processor only bytes. Although it does mean that a 
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default tag for uninitialized bytes is unavailable. Also, uninitialized bytes would have to 
have the same bit combination as scalar non-executable. 

Given the above tagging schemes, we then developed a simple policy to enforce the 
scheme. The policy is shown in Figure 2. 
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5 Proof of Concept 
To determine whether or not the above mentioned technique was feasible, a proof of 
concept was developed. Due to resource constraints the proof of concept did not fully 
show that the solution would mitigate common memory based vulnerabilities like buffer 
overflows, but it did show that the concept is sound. 

5.1 Bochs 
To implement our protection scheme, we needed a platform on which to make additions 
to the standard CPU hardware. During this project, we reviewed three processor  

 
Tag or Datatype Policy 
00 (non-executable scalar) MOV-like instructions must be stateful. If first write is scalar 

then this write is not allowed. 
01 (executable scalar) Branch and call instructions can only jump to memory 

locations with this tag. It will fault otherwise. 
10 (non-executable vector) MOV-like instructions must be stateful. If first write is 

vector then this write is allowed, else its not. 
11 (processor only byte) CALL and RET instructions have write access. CALL sets this 

tag and RET unsets it. All other instructions only have read 
access. 

 

 
Figure 2: Simple Policy 

simulators:  OpenRISC 1000 Simulator, SimpleScalar and Bochs [22][23][24]. During 
our trials, we found that both OpenRISC and SimpleScalar were immature and lack 
adequate documentation. OpenRISC simulator has not been updated since May 2006 and 
SimpleScalar since August 2004. Unlike other documented users, we were unable to get 
either simulator up and running within the short time we had. Thus, we had to resort to 
Bochs, even though Bochs implemented the more complex x86 instruction set. 

Hosted on SourceForge, Bochs is an open-source IA-32 emulator written in C++ that 
aims to emulate the Intel x86 CPU, common I/O devices, and features a custom BIOS. 
Bochs can be configured to emulate a host of different CPUs including: 386, 486, 
Pentium / PentiumII / PentiumIII / Pentium4, or x86-64 CPU including support for 
MMX, SSEx and 3DNow! instructions.  It is capable of running on a multitude of 
different host OSes and is capable of running Linux, DOS, Windows 95/98, Windows 
NT/2000/XP, or Windows Vista as guests OSes.   

For our deployment of Bochs, we used the default configuration which compiles it to 
emulate a Pentium processor. Due to the extremely poor performance of the emulator, 
RedHat 6.0 was used as the guest OS. The guest OS was configured to include the most 
basic modules and the gcc compiler for building test applications. 
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5.2 Assembly Instruction Changes 
To illustrate the feasibility of the solution, some of the assembly instructions in Bochs 
were changed to reflect the policy. The ADD, SUB, MUL, DIV, MOV, store instructions 
were altered to propagate the datatype of the source to the destination. Then the jump, 
branch and CALL instructions were implemented to ensure that they can only jump to 
memory locations that are tagged as executable, else it would log an error message to 
simulate a trap. Notice that this does not completely implement the above mentioned 
policy as there was not enough time to reengineer a state machine into the MOV 
instruction. 

Also we decided that implementing a specialized instruction for the operating system’s 
executable loader to tag memory locations as executable is not necessary at this point. 
Although it will be required when a full solution is designed, it is useless at this point 
because rewriting an operating system kernel to take advantage of it is a non-trivial task. 
Instead, we utilized a special trigger for setting and unsetting memory locations as 
executable. 

Upon review of all available instructions, we found that the MOV instruction will always 
trap if used with the 0xFFFFFFFF and 0xFFFFFFFE memory addresses under normal 
operation. We took advantage of this and used 0xFFFFFFFF as the trigger for setting the 
executable flag and 0xFFFFFFFE as the trigger for unsetting the flag. To enable this, the 
MOV instruction was implemented so it maintains some state. When the MOV 
instruction’s memory address is 0xFFFFFFFF the state is noted. The next time the MOV 
instruction is called, the memory address is treated as the start address for tagging. The 
third time the MOV instruction is called, the memory address is treated as the end address 
for tagging. This allows the user to tag a range of addresses as executable, similar to what 
the loader would have to do. All subsequent MOV instructions behave normally. 
Similarly the 0xFFFFFFFE MOV instruction removed the executable flag. 

5.3 Memory Mapping 
In this proof of concept implementation, the tagging information was not integrated into 
the memory management unit. Instead of storing all of the datatype information in main 
memory as described above, a completely separate memory space was created within 
Bochs to hold the data. This was done to reduce the time required to ensure that the 
memory management unit is properly designed and implemented to be completely 
backwards compatible. The summer student who worked on this project will be 
conducting additional research into the memory management unit, the necessary changes, 
and performance effects for his master’s thesis. 
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6 Results 
As shown in the Figure 3, the specialized MOV instructions for setting and unsetting the 
executable flag for memory locations are fully functional. This confirms that the tagging 
architecture itself is feasible. Although it does not show that it is feasible when integrated 
as part of the standard memory address space and therefore observing all virtual memory 
properties. This must be confirmed at a later date. 

Also, it was confirmed that the instructions indeed propagated the tagging information, 
which is a desired effect. Finally it was also confirmed that when the implemented policy 
was violated, e.g. when the JMP instruction tried to jump to a memory location that was 
not marked as executable, an error message was logged, simulating a trap.  

 

 
Figure 3: Illustration of Executable Tagging 

Performance overhead measurements were not obtained during this proof of concept 
demonstration. This is due to the lack of a well defined set of metrics and measurement 
methodologies. Although, it is expected that performance degradation will be minimal if 
the memory management unit can ensure that the tagging data is loaded into the 
processor’s cache at the same time as memory fetches.  

6.1 Conclusion 
All of the results show that the proposed approach is feasible to a certain extent. 
Although it was not possible to complete a proof of concept demonstration for a full 
fledged solution, the intermediate results are promising. This is especially true when we 
take into account the fact that the changes we made to the emulated processor did not 
break any of the software that runs on it. It was still completely backwards compatible. 
Although this might change once a true trap is utilized instead of a simple error log, this 
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simple proof of concept did show that the addition of tagging information for memory 
objects maintains backwards compatibility.  

Additional work is required to continue the development of the policy and a proof of 
concept demonstration that incorporates the full policy as well as full functionality. 
Furthermore, the proof of concept should include an operating system that is capable of 
leveraging this new paradigm and whose loader can actually set and unset the memory 
locations as executable. Only in this way can we confirm that the end-user and user are 
the same for this solution. 

Finally, during our investigation of possible tagging schemes, we have also developed 
schemes that utilize more than two bits. This is largely to fully cover the read and write 
privileges of each byte of memory. The current solution is only robust against simple 
buffer overflows and mitigates code execution threats. In the more advanced schemes, 
additional bits will be utilized to represent specific data types such as int, char, pointer 
etc. We envisioned that the additional types can help make data corruption more difficult 
if we ensured that you can only overwrite ints with ints or instructions with instructions. 
In the future, we would like to verify that there is added value in these types and also 
develop the policies to further mitigate data corruption and disclosure threats. We would 
also like to show the positive effects of utilizing the proposed solution in conjunction 
with other low required-user-interaction, such as OS level, solutions for a defense in 
depth approach. 
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